top of page

Simple Trinomials

 

 Another of factoring polynomials is called "Simple Trinomials". ( x^2 + bx+ c)

 

  • trinomial which starts which starts with a coefficient of 1. ( where the a= 1)

 

Many Polynomials , such as x^2+ 5x+6 can be written as the product of two binomials of the form (x + r) and (x + s). 

 

                 Factored Form: y = a(x-r) (x-5)                                   *Expand and simplify to turn the factored form to standard form. 

 

                Standard Form : y = ax^2+ bx+ c 

 

 

                     x^2 + 5x+6 

 

                        a       b      c 

                          value  value value

  • Now you have two number that are multiplied to get the "c" value. However, the two numbers have to add up to the "b" value. 

  factor of 6:

1, 2,3, 6.

 

 -2    +   -3   = 5

   -2   x    -3  = 6 

 

You put the following numbers in bracket. 

 

like (x - 2) (x- 3) 

 

Watch this video :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Another tough example; n^2 - 10n + 16

 Factors of 16: 1, 2, 4,8,16.  

 Find two number that add up to -10 but multiply to 16.

 -2 x -8 = 16

-2 + -8 = -10 

 

To factor these trinomials, use a table to help you until you become familiar with the procedure.

 

To factor, you must break up the middle x term with the factors.

 

BUT REMEMBER ALWAYS CHECK YOUR WORK!

 

Example 1) The height of a rock thrown from a walkway over a lagoon can be approximated by the formula h = -5t^2+ 20t + 60, where the t is the time, in seconds, and h is height, in meters. 

 

a) h = -5t^2+ 20t + 60

Common factor. 

 

= -5 (t^2 + 4t - 12) 

= -5 (t-2 ) ( t+6 ) 

 

b) 0= h = -5 ( t-2) (t+6) 

      t-2= 0

      t = 2 seconds 

 

 Therefore, it took 2 seconds for the rock to hit the ground. 

© 2014 by  Tanjot Kaur. Proudly created with Wix.com

bottom of page